How to Fine-Tune llm on your own data?

Fine-tuning Large Language Models (LLMs) on your own data can significantly improve their performance on specific tasks. This guide provides a step-by-step explanation and technical implementation for fine-tune llm on your own data using Parameter Efficient Fine Tuning (PEFT) techniques.

fine tune llm on your own data
fine-tune llm on your own data

1. Introduction

Large Language Models (LLMs) have achieved remarkable success in various natural language processing tasks. However, their performance can be further improved by fine-tuning them on task-specific data. Fine-tuning large pre-trained models can be a daunting task. It requires significant computational resources, memory, and time. But what if you could fine-tune your models efficiently, without sacrificing performance?

2. Background

Fine-tuning LLMs involves adjusting the pre-trained model’s weights to fit your specific task. This process requires:
  • A pre-trained LLM
  • Task-specific data
  • Computational resources

3. Preparing Your Data

To fine-tune LLM on your own data, you need:
  • A dataset relevant to your task
  • Data preprocessing (tokenization, formatting)
  • Splitting data into training, validation, and testing sets

4. Choosing a Fine-Tuning Method

Popular fine-tuning methods include:
  • Full Parameter Fine-Tuning
  • Parameter Efficient Fine Tuning (PEFT)
  • Low-Rank Adaptation (LoRA)
  • Quantized LoRA (QLoRA)
Parameter Efficient Fine Tuning (PEFT) is a family of techniques designed to make fine-tuning more accessible. PEFT modifies only a small subset of the model’s parameters, minimizing changes to the original pre-trained weights.
 
LoRA: Low-Rank Adaptation
LoRA is a popular PEFT method. It introduces additional trainable parameters to adapt the pre-trained model to your target task. LoRA adds:
  • Low-rank matrices to capture task-specific information
  • Intervention weights to control the influence of these matrices 
LoRA preserves the original knowledge while adapting to your task.
 
QLoRA: Quantized LoRA
QLoRA takes LoRA to the next level by leveraging quantization. Quantization represents weights and activations using fewer bits (e.g., 8-bit or 4-bit integers). QLoRA combines LoRA’s efficiency with quantization benefits:
  • Reduced memory requirements
  • Faster computation
  • Lower precision
Key Differences: LoRA vs. QLoRA
 LoRAQLoRA
QuantizationNoYes (8-bit or 4-bit)
MemoryModerateReduced
ComputationModerateFaster
PrecisionFloating-pointLower (8-bit or 4-bit)
Getting Started with LoRA and QLoRA
  • Load your pre-trained model
  • Add LoRA or QLoRA modules
  • Freeze pre-trained weights
  • Fine-tune LoRA or QLoRA parameters
  • Evaluate your model
Benefits of PEFT, LoRA, and QLoRA
  • Efficient fine-tuning
  • Faster fine-tuning (QLoRA)
  • Preserves pre-trained knowledge
When to Use Each
  • LoRA: Default PEFT choice
  • QLoRA: Use when resources are limited or speed is critical

5. Technical Implementation

Full Parameter Fine-Tuning

import torch
from transformers import AutoModelForSequenceClassification

# Load pre-trained model
model = AutoModelForSequenceClassification.from_pretrained('bert-base-uncased')

# Define custom dataset class
class CustomDataset(torch.utils.data.Dataset):
def __init__(self, data, tokenizer):
self.data = data
self.tokenizer = tokenizer

def __getitem__(self, idx):
text = self.data.iloc[idx, 0]
label = self.data.iloc[idx, 1]

encoding = self.tokenizer(text, return_tensors='pt', max_length=512, padding='max_length', truncation=True)

return {
'input_ids': encoding['input_ids'].flatten(),
'attention_mask': encoding['attention_mask'].flatten(),
'labels': torch.tensor(label)
}

def __len__(self):
return len(self.data)

# Initialize dataset and data loader
dataset = CustomDataset(data, tokenizer)
data_loader = torch.utils.data.DataLoader(dataset, batch_size=32, shuffle=True)

# Fine-tune model
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=1e-5)

for epoch in range(5):
model.train()
total_loss = 0
for batch in data_loader:
input_ids = batch['input_ids'].to(device)
attention_mask = batch['attention_mask'].to(device)
labels = batch['labels'].to(device)

optimizer.zero_grad()

outputs = model(input_ids, attention_mask=attention_mask, labels=labels)
loss = criterion(outputs, labels)

loss.backward()
optimizer.step()

total_loss += loss.item()

print(f'Epoch {epoch+1}, Loss: {total_loss / len(data_loader)}')

Low-Rank Adaptation (LoRA)

import torch
from transformers import AutoModelForSequenceClassification

# Load pre-trained model
model = AutoModelForSequenceClassification.from_pretrained('bert-base-uncased')

# Define LoRA modules
class LoRA(torch.nn.Module):
def __init__(self, model):
super(LoRA, self).__init__()
self.model = model
self.lora_matrices = torch.nn.ParameterList([torch.nn.Parameter(torch.randn(768, 768)) for _ in range(12)])
self.intervention_weights = torch.nn.ParameterList([torch.nn.Parameter(torch.randn(768)) for _ in range(12)])

def forward(self, input_ids, attention_mask):
outputs = self.model(input_ids, attention_mask)
for i in range(12):
outputs = torch.matmul(outputs, self.lora_matrices[i]) + self.intervention_weights[i]
return outputs

# Initialize LoRA module
lora_module = LoRA(model)

# Fine-tune LoRA parameters
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(lora_module.parameters(), lr=1e-5)

for epoch in range(5):
model.train()
total_loss = 0
for batch in data_loader:
input_ids = batch['input_ids'].to(device)
attention_mask = batch['attention_mask'].to(device)
labels = batch['labels'].to(device)

optimizer.zero_grad()

outputs = lora_module(input_ids, attention_mask)
loss

6. Conclusion

Fine-tuning Large Language Models (LLMs) on your own data can significantly improve their performance on specific tasks. By understanding the different fine-tuning methods, such as Full Parameter Fine-Tuning and Parameter Efficient Fine Tuning (PEFT) techniques like Low-Rank Adaptation (LoRA) and Quantized LoRA (QLoRA), you can choose the best approach for your needs.
Remember to:
  • Prepare your data carefully
  • Select the most suitable fine-tuning method
  • Monitor performance and adjust hyperparameters as needed

By following these guidelines and implementing the provided code snippets, you’ll be well on your way to fine-tuning LLMs and achieving state-of-the-art results in your natural language processing applications.

Additional Resources:
  • For more information on LLMs and fine-tuning, refer to the Transformers library documentation and research papers.
  • Experiment with different fine-tuning methods and hyperparameters to find the optimal approach for your specific task.

Next Steps:

  • Apply fine-tuning techniques to your own NLP projects
  • Explore other PEFT methods and techniques
  • Stay updated with the latest developments in LLM fine-tuning and NLP research and learn more about how to fine-tune llm on your own data from llama fine-tuning.

Please Complete the form below and Our Tech Leads and Business Analysts contact you to discuss your project. Your information will be kept confidential.

Please enable JavaScript in your browser to complete this form.
Name
Scroll to Top